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Abstract-The non-linearity which is inherently present in centrifugally driven free convection in porous 
media raises the problem of multiple solutions existent in this particular type of system. The solution to 
the non-linear problem is obtained by using a truncated Gale&in method to obtain a set of ordinary 
differential equation for the time evolution of the Galerkin amplitudes. It is demonstrated that Darcy’s 
model when extended to include the time derivative term yields, subject to appropriate scaling, the familiar 
Lorenz equations although with different coefficients, at a similar level of Galerkin truncation. The system 
of ordinary differential equations was solved by using Adomian’s decomposition method. Below a certain 
critical value of the centrifugally related Rayleigh number the obvious unique motionless conduction 
solution is obtained. At slightly super-critical values of the centrifugal Rayleigh number a pitchfork 
bifurcation occurs, leading to two different steady solutions. For highly supercritical Rayleigh numbers 
transition to chaotic solutions occurs via a Hopf bifurcation. The effect of the time derivative term in 
Darcy’s equation is shown to be crucial in this truncated model as the value of Rayleigh number when 
transition lo the non-periodic regime occurs goes to infinity at the same rate as the time derivative term 
goes to zero. Examples of different convection solutions and the resulting rate of heat transfer are provided. 

0 1998 Elsevier Science Ltd. All rights reserved. 

‘1. INTRODUCTION 

Transport phenomena in rotating porous media have 
a variety of applications in engineering. The effect 
of rotation and of free convection as a result of the 
centrifugal body force is of particular interest from 
both the practical and theoretical points of view. 

Engineering applications include among others, the 
food, chemical and materials processing industries 
and rotating machinery. The problem of solidification 
of binary alloys includes also transport phenomena in 
rotating porous media as the dendritic mushy zone is 
regarded for all practical purposes as a porous 
medium. Other applications of the porous medium 
approach are discussed by Nield and Bejan [l] and 
Bejan [2] in comprehensive reviews of the funda- 
mentals of heat convection in porous media. Bejan [2] 
mentions among the applications of heat transfer in 
porous media the process of cooling of winding struc- 
tures in high-power density electric machines. When 
this applies to a rotor of an electric machine, say 
generator (or motor), rotation effects become relevant 
as well. 

t Author to whom correspondence should be addressed. 

Research results (Patil and Vaidyanathan [3], Jou 
and Liaw [4, 51, Rudraiah, Shivakumara and Frie- 
drich [6] and Palm and Tyvand [7]) are available for 
free convection in rotating porous media resulting 
from gravity in the presence of a single fluid or binary 
mixture. However, for a rotating porous matrix, the 
additional centrifugal body force has to be considered. 
This force generates free convection in the same man- 
ner as the gravity force causes natural convection. 
Vadasz [8] presented an analytical solution to the 
three-dimensional free convection problem in a long 
rotating porous box for the case when the temperature 
gradient resulting from the imposed conditions on 
the boundary is perpendicular to the centrifugal body 
force. The analysis focused on the effect of the Coriolis 
force on the basic free convection solution, for high 
values of Ekman number. Secondary circulation was 
obtained in a plane perpendicular to the leading free 
convection plane as a result of the Coriolis effect on 
the flow. Analytical solutions for the linear stability 
of free convection in a porous layer subject to rotation 
for the case when the temperature gradient resulting 
from the conditions imposed on the boundaries is 
collinear with the centrifugal body force were pre- 
sented by Vadasz [9] considering a porous layer which 
is placed an arbitrary positive distance from the axis 
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NOMENCLATURE 

DU Darcy number, defined by k,/L: U’ vertical component of the filtration 
A 
e, unit vector in the x direction velocity 
A 
e, unit vector in the y direction W* the width of the layer 
1 
ep unit vector in the z direction W the top aspect ratio of the porous layer, 
* 
e, unit vector in the normal to the equals WJL, 

boundary, positive outwards x0 the dimensionless offset distance from 

H* the height of the layer the rotation axis, equals x.+/L, 
H the front aspect ratio of the porous X horizontal length coordinate 

layer, equals H,/L, Y horizontal width coordinate 

k, permeability of the porous domain vertical coordinate 

L* the length of the porous layer ; resealed amplitude A I,, equation ( 18) 
Mr a ratio between the heat capacity of the Y resealed amplitude B, , , equation (18) 

fluid and the effective heat capacity Z resealed amplitude Bzo, equation (18). 
of the porous domain 

P reduced pressure generalised to include 
the constant component of the Greek symbols 
centrifugal term (dimensionless) c( a parameter related to the time 

Pr Prandtl number, equals ~*/a,. derivative term in Darcy’s equation 

9 dimensionless filtration velocity a.?* effective thermal diffusivity 
vector, equals UC, + ~6~ + w& B* thermal expansion coefficient 

R scaled centrifugal Rayleigh number, Y a parameter defined by equation (17) 
equals (Ra, + Ru,,,~/~)H~/x~(H* + l)* AT, characteristic temperature difference 

Ra, porous media centrifugal Rayleigh 8 a parameter, defined by equation (12) 
number related to the contribution of the p* fluid’s dynamic viscosity 
horizontal location within the porous v* fluid’s kinematic viscosity 
layer to the centrifugal acceleration, 5 a parameter, defined by equation (12) 
equals 8, AT,o~L~k.+M&,,v* 

Ra,o porous media centrifugal Rayleigh ; 

resealed time, defined by equation (12) 
porosity 

number related to the contribution of the X a coefficient of the time derivative term 
offset distance from the rotation axis in Darcy’s equation, equals cjPr/Da 
to the centrifugal acceleration, equals * stream function 
B, ATcdxo*L,k,Mh_+v, % angular velocity of the rotating box. 

T dimensionless temperature, equals 

(T, - Tc)I(Tn - Tc) 
Tc coldest wall temperature Subscripts 
TH hottest wall temperature * dimensional values 
U horizontal x component of the C characteristic values 

filtration velocity C related to the coldest wall 
V horizontal y component of the cr critical values 

filtration velocity H related to the hottest wall. 

of rotation. The linear stability analysis provided the supercritical values of the centrifugal Rayleigh 
stability criteria, i.e., the critical centrifugal Rayleigh number. This is accomplished by adopting Adomian’s 
numbers, the critical wave numbers and the cor- decomposition method (Adomian [lo, 1 I]) to solve 
responding eigenfunctions for different values of the the set of ordinary differential equations obtained via 
parameter controlling the offset distance from the axis a truncated Galerkin expansion. Adomian’s 
of rotation, and allowed to describe qualitatively the decomposition method was shown to provide 
convective flow. However, as usual, the linear stability extremely accurate results for a wide range of non- 
analysis cannot provide information regarding the linear problems (see Olek [12, 13]), some of which 
values of the convection amplitudes nor regarding the have closed form analytical solutions and the com- 
average rate of heat transfer. The objective of the parison between the decomposition method and the 
present paper is to report the results of non-linear known analytical (or alternatively numerical) results 
solutions to this problem including possible tran- as presented by Olek [12, 131 agreed up to 14 sig- 
sitions between different regimes of convection at nificant digits. 
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The objective of the present paper is to demonstrate 
the possible convection regimes at supercritical values 
of the centrifugal Rayleigh number and evaluate the 
corresponding ave:rage rate of heat transfer for the 
problem of centrifugally driven convection in a porous 
layer placed an arbitrary positive distance from the 
axis of rotation. 

2. PROBLEM FORMULATION 

A narrow fluid saturated porous layer subject to 
rotation is placed a dimensionless distance x0 from the 
axis of rotation as presented in Fig. 1. The offset 
distance is presented in a dimensionless form rep- 
resenting the ratio between the dimensional offset dis- 
tance and the length of the porous layer in the form 
x0 = x,./L,. Two systems of coordinates are pre- 
sented in Fig. 1, the first (x’, y’, z’) is linked to the axis 
of rotation and the second (x, y, z), placed a horizontal 
distance x,, apart from the first one, belongs to the 
porous layer coordinates. A positive temperature 
gradient in the x direction is anticipated as a result 
of the imposed thermal boundary conditions. This 
temperature gradient is collinear with the centrifugal 
acceleration. The significance of the variation of the 
centrifugal acceleration in the x direction depends on 
the offset distance from the axis of rotation. For the 
layer which is adjacent to the rotation axis (i.e., 
x0 = 0) the variation of the centrifugal acceleration 
leads practically to a zero acceleration at x = 0 and a 
maximum value of acceleration at x = 1. However, 
for the layer which is far away from the rotation axis 
(x0 >> 1) the centrifugal acceleration is almost con- 
stant resembling the problem of a porous layer heated 
from below subject to gravity (here ‘below’ means the 
location where x := 1). The front aspect ratio of the 
layer is defined as H = HJL, where H* and L, are 

the height and the length of the layer, respectively. 
The top aspect ratio is W = W,/L, where W, is the 
width of the layer. The following analysis is confined 
to a narrow layer, i.e. W << 1. Free convection may 
occur as a result of the centrifugal body force while 
the gravity force is neglected. The condition for this 
assumption to be valid was developed by Vadasz [9]. 
In addition Govender [14] showed that in the cor- 
responding problem of combined gravity and cen- 
trifugal buoyancy the linear stability results, i.e. the 
critical values and the eigen-functions are identical 
to the problem where gravity effects are weak and 
therefore neglected. Two inertial effects are 
considered. The first is the centrifugal acceleration, as 
far as changes in density are concerned and the second 
is the time derivative term in Darcy’s equation. Other 
than that Darcy’s law is assumed to govern the fluid 
flow (extended to include the centrifugal acceleration), 
while the Boussinesq approximation is applied for 
the effects of density variations. As a narrow layer is 
considered, i.e. W << 1, a Cartesian coordinate system 
can be used and the component of the centrifugal 
acceleration in the y direction can be neglected (see 
Vadasz [9]). Under these conditions the following 
dimensionless set of governing equations is obtained 
(see Vadasz [9] for the derivation of equation (2) 
without the time derivative term, and Dagan [ 151 for 
the derivation of equations (1) and (3)) 

v-q = 0 (1) 

[ 1 ‘“+1 q = -Vp-[Ra,o+Ru,x]R, 
xat 

(2) 

(3) 

Equations (l)-(3) are presented in a dimensionless 

Fig. 1. A rotating fluid saturated porous layer distant from the centre of rotation and subject to different 
temperatures at the sidewalls. 
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form. The values c(,./L,M,, p*uer/k*Mf, and 
AT, = (T, - T,-) are used to scale the filtration velocity 
components (u,, u*, w.+), pressure @*), and tem- 
perature variations (T, - T,-), respectively, where c+ 
is the effective thermal diffusivity, p* is fluid’s 
viscosity, k, is the permeability of the porous matrix 
and Mf is the ratio between the heat capacity of the 
fluid and the effective heat capacity of the porous 
domain. The length of the layer L, was used for scal- 
ing the variables x*, y*, z* and L$x,. for scaling the 
time t,. Accordingly, x = x*/L,, y = y,/L, and 
z = z*lL, and t = t,a,./L$ In equation (2) one 
observes two different centrifugal Rayleigh numbers ; 
Rawo = 8*AT,o:xo*L,k,Mf/a,.v, is the centrifugal 
Rayleigh number representing the contribution of the 
offset distance from the rotation axis to the centrifugal 
acceleration and Ra, = &ATco:L:k*Mf/cc,.v* repre- 
sents the contribution of the horizontal location 
within the porous layer to the centrifugal acceleration. 
The time derivative term was included in Darcy’s 
equation (2), where x is a dimensionless group which 
includes the Prandtl and Darcy numbers as well as 
the porosity of the porous domain and is defined by 
x = C$ Pr/Da. It is only through this combined dimen- 
sionless group that the Prandtl number is affecting the 
flow in porous media. Hence, while Pr can take values 
from as small as 10e3 for liquid metals and up to lo3 
for oils, the corresponding values of x will be mag- 
nified by a factor of $/Da which is typically a big 
number. This factor can take values from 10 to 10”. 
Therefore the values of x can be expected in the range 
from lo-* to 10Z3. Typical values of x are quite big, a 
fact which provides the justification for neglecting the 
time derivative term in Darcy’s equation. However, 
there are circumstances when its value can become of 
a unit order of magnitude or even smaller, in which 
case the time derivative term should be retained. 

The reciprocal of the dimensionless offset distance 
from the axis of rotation, l/x, (which is identical to 
the ratio between the two Rayleigh numbers 
Ra,/Ra,,) can be introduced into equation (2) to 
obtain 

[ 1 la+1 q = -Vp-Ra,, 
x at 

From equation (4) it is observed that when the porous 
layer is far away from the axis of rotation then x0 >> 1 
and the contribution of the term x/x0 is not significant, 
while for a layer close enough to the rotation axis 
x0 << 1 and the contribution of the first term becomes 
insignificant. In the first case the only controlling par- 
ameter is Ra,, while in the latter case the only con- 
trolling parameter is Ra, = Ramo/xo. 

As all the boundaries are rigid the solution must 
follow the impermeability conditions there, i.e. 
q -3, = 0 on the boundaries, where & is a unit vector 
normal to the boundary. The temperature boundary 
conditionsare: T=Oatx=O, T=l atx=l and 
VT-C, = 0 on all other walls representing the insu- 
lation condition on these walls. 

For convective rolls having axes parallel to the shor- 
ter dimension (i.e. y) u = 0, and the governing equa- 
tions can be presented in terms of a stream function 
defined by u = a$/az and w = -a$/ax, which upon 
applying the curl (V x) operator on equation (2) 
yields the following system of partial differential equa- 
tions from equations (l), (2) and (3) 

[i$+I][s+$]= -[Ra,,+Ra,x]g (5) 

aT a$aT a*aT a2T azz- 
at+taZ-zax=~++ (6) 

where the boundary conditions for the stream func- 
tion are $ = 0 on all solid boundaries. 

The set of partial differential equations (5) and (6) 
form a non-linear coupled system which together with 
the corresponding boundary conditions accepts a 
basic motionless conduction solution. 

3. ANALYSIS 

To obtain the solution to the non-linear coupled 
system of partial differential equations (5) and (6) we 
represent the stream function and temperature in the 
form 

+ = A,, sin(7tx) sin g 
0 

T = x+ B, 1 sin(nx) cos 
0 

z +B,, sin(2nx) (8) 

This representation is equivalent to a Galerkin expan- 
sion of the solution in both x and z directions, trunc- 
ated when i+j = 2, where i is the Galerkin summation 
index in the x direction and i is the Galerkin sum- 
mation index in the z direction. Substituting equations 
(7) and (8) into equations (5) and (6), multiplying the 
equations by the orthogonal eigenfunctions cor- 
responding to equations (7) and (8) and integrating 
them over the domain, i.e. s: dxltdz(*), yields a set 
of three ordinary differential equations for the time 
evolution of the amplitudes, in the form 

d-41, 
dr= -$$‘%,.$B,,] (9) 

dB, I -= 
dr --Bi+%,+;.M, (10) 

d&o -= 
dr +J&$& (11) 

where the time was resealed and the following 
notation was introduced 

HZ 
t; [=Ra,,+?; lj=F 

(1-a 
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The fixed (i.e. stationary) points of the system of 
equations (9), (10) and (11) are obtained by setting 
all the time derivatives equal to zero and solving the 
resulting algebraic equations. They yield the following 
possible solutions 

A,, =B,, =& =o (13) 

representing the motionless conduction solution and 

A,, = T2,JZ(H2+1)“2 h-1 
( > 

l/2 
(14) 

(15) 

R,, = (5-n’O’) 
715 

(16) 

representing the stmeady convective solutions. It is con- 
venient to introduce the following further notation 

(17) 

and rescale the amplitudes with respect to their con- 
vective fixed points in the form 

_y= All KRB, I _-- 
2&,/2y(R- 1) 

Y= 
2J2yo 

nRR,, 
z= (R-l) (18) 

to provide the following set of scaled equations which 
are equivalent to equations (9) (10) and (11) 

k= a(Y-X) (19) 

Y= RX-Y-(R- 1)XZ (20) 

i = 4y(XY- Z) (21) 

where the primes 11’ ) denote time derivatives d( )/dr. 
Equations (19), (20) and (21) are equivalent to Lor- 

enz equations (Lorenz [16], Sparrow [17]) although 
with different coelhcients. The demonstration of this 
equivalence is provided in Appendix A. However, 
since Lorenz equations were extensively analysed and 
solved for parameter values corresponding to gravity 
driven convection in pure fluids (i.e. non-porous 
domains) and even there the parameter values most 
frequently used correspond to t( = 10 and y = 2/3, it 
is of interest to analyse and solve the corresponding 
equations for parameter values corresponding to the 
present problem under investigation. 

Therefore, the :iixed points of the resealed system 
are X, = Y, = Z, .= 0 corresponding to the motionless 
solution, and X,, = f 1, Y,,, = f 1, Z,,3 = 1 cor- 
responding to the convection solution. 

The next step is to perform a stability analysis of 
the stationary solutions in order to determine the nat- 
ure of the dynamics about the fixed points. The system 
equations (19) (20), (21) has the general form 

X = f(X) and the equilibrium (stationary or fixed) 
points X, are defined by f(X,) = 0. The stability matrix 
is established by evaluating the Jacobian (CJf/ax,), at 
the fixed point of interest X,. The eigenvalues of the 
stability matrix, evaluated by solving the zeros of the 
characteristic polynomial associated with the stability 
matrix, provide the stability conditions. A fixed point 
is stable if all eigenvalues corresponding to its stability 
matrix are negative (or in the case of complex eigen- 
values they have negative real parts) and it is not 
stable if at least one eigenvalue becomes positive (or 
in the case of complex eigenvalues it has a positive 
real part). 

The stability of the fixed point associated with the 
motionless solution (X, = Y, = Z, = 0) is controlled 
by the zeros of the following characteristic polynomial 
equation for the eigenvalues, li (i = 1,2,3) 

(4y+1)[crR-(cr+1)(1+1)] = 0 (22) 

The first eigenvalue I, = -4y is always negative as 
y > 0. The other two eigenvalues are alwavs real and 
given by &,, = [-(a+-l)f (~1+1)~+4~(R-1)]/2. 
& is also always negative and.1, provides the stability 
condition for the motionless solution in the form 
a2 < 00 R < 1. Therefore the critical value of R, 
where the motionless solution loses stability and the 
convection solution (expressed by the other two fixed 
points) takes over, is obtained as R,, = R,, = 1. The 
significance of this result can be established by 
expressing it in terms of the original parameters by 
using equations (17) and (12), i.e. (Ru&+ 
Ra,/2),, = rc2e2. Two limiting cases of interest are (i) 
x0 + 0 corresponding to Rauo + 0 which yields 
Ra,.,, = 2Q27r2 and (ii) x0 >> 1 (say x,, -+ co) which 
yields Raoo,cr = t12n2. The value of f3 has to be con- 
sistent with the wavenumber at the stability threshold 
in order for the convection cells to fit into the domain 
and satisfy the boundary conditions. For case (i) the 
value of BCr was found by Vadasz (1996) to be 
0,, = 2.0003 while for case (ii) 0,, = 2. Substituting 
these values yields for case (i) Raw,,, = 8.0023n2 which 
is only 2.5% off the accurate result presented by 
Vadasz [9] and for case (ii) RLZ,,,~, = 47c2 which is the 
accurate result. The slight inaccuracy in the result 
corresponding to case (i) is due to the Galerkin trunc- 
ation. 

The stability of the fixed points associated with the 
convection solution (X2,3, Yz,x, Z,,,) is controlled by 
the following cubic equation for the eigenvalues, li 
(i= 1,2,3) 

a3+(4Y+a+1)a2+4y(a+R)a+8ycc(R-i) =o 

(23) 

This characteristic polynomial equation for the stab- 
ility matrix eigenvalues around the convection fixed 
points is identical to the corresponding equations 
obtained from Lorenz model (Sparrow [ 171) with the 
only difference being in the physical interpretation 
(and accordingly the numerical values) of the par- 
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ameter CI, y and R. Equation (23) yields three eigen- 
values. The smallest eigenvalue 1, is always real and 
negative over all the range of parameters values. The 
other two are real and negative at slightly supercritical 
values of R, therefore the convection fixed points are 
stable, i.e. simple nodes. As the value of R increases 
these two roots move on the real axis towards the 
origin, the smallest between the two chasing the other 
one and reducing the distance between them. For 
c( = 50/rc2 and y = 0.5 these roots become equal when 
R E 1.28. It is exactly at this point when these two 
roots become complex conjugate. However, they have 
still negative real parts, therefore the convection fixed 
points are stable, i.e. spiral nodes. As the value of R 
increases further, both the imaginary and real parts 
of these two complex conjugate eigenvalues increase 
and, on the complex plane, they cross the imaginary 
axis, i.e. their real part becomes non-negative at a 
value of R given by 

R = a(a+4y+3) 
c2 (IX-4y- 1, 

At this point the convection fixed points lose their 
stability and chaos sets in. Just prior to this happening, 
at the point when the complex eigenvalues cross the 
imaginary axis a Hopf bifurcation occurs, i.e. at ipc2 
these eigenvalues are purely imaginary leading to a 
limit cycle (periodic solution). The evolution of the 
complex eigenvalues for tl = 50/n2 and y = 0.5 is pre- 
sented in Fig. 2 providing a graphical description of 
the sequence of events leading to the loss of stability 
of the convection fixed points. For u. = 50/rr2 and 
y = 0.5 the loss of stability of the convection fixed 
points is evaluated using equation (24) to be 
&, = 24.68. 

An interesting observation can be made by invest- 
igating the behaviour of the value of R,, as cz becomes 

very big. When c( >> 1 the time derivative term in Dar- 
cy’s equation and consequently in equation (19) is 
very small and this fact provides the justification of 
neglecting this term. By taking the limit of R,, in 
equation (24) one obtains that R,, + c( as tl+ co. 
Therefore although a much higher value for transition 
to chaos is required when the values of c( are very big 
this transition still exists, while neglecting the time 
derivative term in equation (19) wipes out this possi- 
bility as the dimensionality of the system reduces to 
two. Of course, alternatively one could use more 
modes in the Galerkin expansion thus still allowing 
this transition to occur. However at this level of trunc- 
ation including the time derivative term is necessary 
in order to keep all possibilities of transitions in the 
model. 

4. METHOD OF SOLUTION 

Adomian’s decomposition method (Adomian [ 10, 
1 l]), is applied to solve the system of equations (19), 
(20) and (21). The method provides in principle an 
analytical solution in the form of an infinite power 
series for each dependent variable and its excellent 
accuracy in solving non-linear equations was dem- 
onstrated by Olek [ 12, 131. The solution follows Olek 
[13] and considers the following more general dynami- 
cal system of equations 

% = $ b,X,+ jJ f a,,X,X,, Vi = 1,2,. . .,m 
,=I I= lj=l 

(25) 

given the initial conditions X,(O), i = 1,2,. . . ,m. It 
can be easily observed that the system of equations 
(19), (20) and (21) is just a particular case of equation 

-1 -0.5 0 0.5 1 

Re(h) 
The evolution of the complex eigenvalues with increasing the Rayleigh number, for c( 

y = 0.5. 
= 50/n’ and 
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(25). A brief description of the method of solution is 
provided in Appendix B. 

Olek [12, 131 used the decomposition method to 
solve a variety of non-linear problems, some of which 
have closed form analytical solutions and a com- 
parison was provided between the results obtained via 
the decomposition method and either exact analytical 
or numerical results. The conclusion from the com- 
parison was that the decomposition method provided 
results which were accurate up to 14 significant digits. 
Even when only three terms were kept in the decompo- 
sition series solution of the Lotka-Volterra equations 
the results agreed ‘by at least five significant digits with 
a corresponding numerical solution. The problem can 
actually be solved to the desired accuracy by including 
more terms in the computation of the series. 

For the system of equation (25) the non-linear terms 
are of the rather simple p form, so that very simple 
symmetry rules for the decomposition polynomials 
can be used. If we denote Y = d/dt, the formal solu- 
tion of equation (25) may be presented in the form 

xi(t) = X;(O) + 9-l 1-l f b,X,+ 5 f qj,x,x, 
I=1 j=l 1 

Vi= 1,2,...,m (26) 

where dp-’ = & I:*] dt. According to the decompo- 
sition method an expansion of the following form is 
assumed 

X;(t) = f Tin vi= 1,2 )..., m (27) 
n=O 

Substituting equation (27) into equation (26) yields 
after rearranging the products 

Vi= 1,2,...,m (28) 

The solution is en.sured by requiring 

& = Xi(O) vi = 1) 2, . . . ) m (29) 

Vi= 1,2 ,...,m (30) 

Vi= 1,2,...,m (32) 

After carrying out the integrations, the following solu- 
tion is obtained 

x,(t) = f &I” 
n=0 n! 

vi= 1,2 )..., m (33) 

where 

ciO = Xi(O) Vi = 1,2,. . . , m (34) 

and the general term for n > 1 is defined through the 
following recurrence relationship 

vi = 1,2,. . ,m (35) 

The decomposition method does not assure, on its 
own, existence and uniqueness of the solution. In fact, 
it can be safely applied when a fixed point theorem 
holds. A theorem proved by Repaci [18] indicates that 
there is no point in looking for solutions globally in 
time. On the other hand, the decomposition method 
can be used as an algorithm for the approximation of 
the dynamical response in a sequence of time intervals 
10, t,), It,, f2)>. . . , [t,_ ,, t,) such that the solution at tp 
is taken as initial condition in the interval [t,, t,+,) 
which follows. This approach has the following 
advantages : (i) in each time-interval one can apply a 
theorem proved by Repaci [ 181, which states that the 
solution obtained by the decomposition method con- 
verges to a unique solution as the number of terms in 
the series becomes infinite, and (ii) the approximation 
in each interval is continuous in time and can be 
obtained with the desired accuracy corresponding to 
the desired number of terms. 

The latter procedure is adopted in the computation 
of the solution to equations (19), (20) and (21). One 
can easily observe that this set of equations are just a 
particular case of equation (25) with m = 3. The set 
of equations (19) (20) and (21) provide the following 
non-zero coefficients for substitution in equation (25) 

b,, = --cc; b,, =cr; b,, = R; b,, = - 1; 

bz3 = -4~; a2,3 = -(R-l); u3,2 = 4y (36) 

Except for these coefficients all others are identically 
zero. In all computations we used 15 terms in the 
series and a time interval of AZ = 10m3. 

5. RESULTS AND DISCUSSION 

The method of solution presented in the previous 
section was applied to obtain the sets of results for 
different supercritical values of R. All solutions were 
obtained using the same initial conditions which were 
selected to be in the neighbourhood of the positive 
convective fixed point. As such the common initial 
conditions are at t = 0: X= Y = Z = 1.1. Since the 
paper’s objectives are to demonstrate different poss- 
ible solution results and transitions as the value of R 
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varies we did not make any attempt to investigate at 
this stage the effect of the other two parameters y and 
tl on the results. Except for the conclusion regarding 
the effect of c( on the transitions when tl + co, which 
was presented in Section 3, these two parameters were 
kept constant with the following values : y = 0.5 and 
c1 = 50/r?. All computations were carried out initially 
up to a value of maximum time T,,,~~ = 80, but sub- 
sequently it was established that this was not sufficient, 
especially for R values in the vicinity of expected tran- 
sitions. Therefore all computations have been 
repeated up to a maximum time of t,,, = 160. The 
time step used for the computational procedure 
described in the previous section was constant for all 
cases and set to be AZ = 10e3, while 15 terms in the 
series were used. The solution data points were post- 
processed for graphical representation of the results 
in the form of state space projections of trajectories 
onto the Y-X, Z-Y and Z-X planes. 

The initial supercritical convective solutions are 
presented in Fig. 3 where the solution data points, 
which represent trajectories, were projected onto the 
Y-X and Z-T planes, respectively. The solution data 
points were not connected. From the figure it is evi- 
dent that at a slightly supercritical value of R, i.e. 
R = 1.1, the convective solution is a stable simple 
node, i.e. the trajectory moves towards the fixed point, 
Xs = Y, = Zs = 1, on a straight line. For R = 2 the 
solution shows that the trajectory is attracted to the 
convective fixed point via a spiral, i.e. the fixed point 
is a stable spiral node, which is consistent with the 
eigenvalues analysis which predicted a transition of 
the two originally real roots to a pair of complex 
conjugate roots at a value of R = 1.28. At higher 
values of R, e.g. R = 5 and R = 10 the spiralling 
approach of the trajectories towards the steady state 
fixed point is even more pronounced, a fact which is 
consistent with the eigenvalues results presented in 
Fig. 2, indicating that the values of their imaginary 
parts increase as the value of R increases. The results 
presented in Fig. 4 indicate that as the value of R 
increases further to R = 20 the trajectory spirals so 
many times before it reaches the fixed point that its 
projection on the Y-X and Z-Y planes can be inter- 
preted in a misleading way. Connecting the tra- 
jectory’s data points does not provide a better pres- 
entation, as most of the plane is then filled black by 
the trajectories. This is felt in the results for R = 23 
too, which show in addition a small white hole at the 
convection fixed point. This indicates that the solution 
needed to continue further beyond the maximum time 
value of z,,, = 160 in order to fill the space very close 
to the fixed point. At R = 24 the results are even more 
difficult to interpret, however by observing the X(z), 
Y(z) and Z(z) time domain patterns (which are not 
included here) it is evident that the solution is still 
heading in a spiral fashion towards the convective 
fixed point, however a much longer time (i.e. beyond 
7max = 160) is needed for it to get there. At a value of 
R = 24.32 the projection of the trajectory’s data 

points presented in Fig. 4 indicates that a limit cycle 
was created, i.e. the solution is not heading anymore 
towards the convective fixed point but rather fluc- 
tuates periodically around it. Note that the solution 
data points were not connected, their projection on 
the Y-X and Z-Y planes still forms what can be seen 
as a continuous curve (these are not Poincare 
sections). Beyond this value of R = 24.32 the tra- 
jectories are neither attracted anymore to the fixed 
point, nor do they create a limit cycle, but rather 
wind around in an irregular fashion, not repeating or 
intersecting themselves. This regime is defined as non- 
periodic or chaotic. The value of R = 24.32 where the 
transition occurred via the Hopf bifurcation (i.e. the 
transition was preceded by a limit cycle which occurs 
at a particular value of R and only at this particular 
value) is only 1.5% off the value predicted from the 
eigenvalue analysis, when the real part of the pair 
of complex conjugate eigenvalues became positive at 
R = 24.68 and the convective fixed points lost their 
stability. The Hopf bifurcation associated with this 
transition is subcritical similarly as in the original 
Lorenz system corresponding to convection in pure 
fluids (non-porous domains). The solution results for 
a value of R slightly above this transition, i.e. for 
R = 24.6 are presented in Fig. 5. Figure 5(a) presents 
the results of the trajectory’s data points projected 
onto the Y-Xand Z-Y planes after a time of zmaX = 80. 
It is evident from the figure that the results up to this 
time value can be easily confused and thought to be 
qualitatively similar to the ones presented in Fig. 4 
corresponding to R = 24. Only an inspection of the 
data in the time domain, i.e. X(r), Y(z) and Z(7) 
(which are not included here), indicated that many 
subsequent maxima values of X(z), Y(7) and Z(7) are 
still growing as a function of time, suggesting to extend 
the maximum time to another value far beyond 
zmaX = 80. When the maximum time was set to 
7rnax = 160 for the same value of R = 24.6, we 
obtained the results presented in Fig. 5(b) which show 
that the solution is chaotic. Since the trajectory pre- 
sented here includes all the transient evolution one 
can magnify the figure obtained for the chaotic solu- 
tion, Fig. 5(b), around the fixed convective point, and 
present it in the form shown in Fig. 5(c). Now, the 
comparison between Figs. 5(c) and 5(a) shows that 
evidently Fig. S(a) is only a partial picture of the more 
developed chaotic solution presented in Fig. 5(b). The 
projection of the trajectory onto the Y-X, Z-X and 
Z-Y planes at a value of R = 26 is presented in Figs. 
6, 7 and 8, respectively. In these figures the evolution 
of the trajectory over the transient is excluded. While 
Figs. 6(b), 7(b) and 8(b) represent the corresponding 
projections of the solution data points onto the Y-X, 
Z-X and Z-Y planes, respectively, the same cor- 
responding projections while connecting the data 
points are presented in Figs. 6(a), 7(a) and 8(a). Note 
that the trajectory does not intersect itself if we con- 
sider the full three-dimensional picture. The crossings 
in Figs. 6(a), 7(a) and 8(a) are the results of the pro- 
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Fig. 3. The evolution of trajectories over time in the state space for increasing values of Rayleigh number 
(in terms of R) corresponding to R > 1.1 and R 6 10. The graphs represent the projection of the solution 

data points onto the Y-X and Z-Y planes, respectively. 
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Fig. 6. The evolution of trajectories over time in the state space for a value of Rayleigh number (in terms 
of R) corresponding to R = 26. Initial transient values not included. (a) The projection of trajectories onto 
the Y-X plane by connecting the solution data points. (b) The projection of the solution data points (not 

connected) onto the Y-X plane. 

jection of the results onto two dimensions. A plot of where this slightly different pattern can be observed. 
successive maxima of 2 plotted against each other for At a further higher value of R, slightly above R z 100 
R = 26 is presented in Fig. 9 providing a confirmation a transition from chaos to a periodic solution is 
of the chaotic regime. The results of higher values obtained which persists over a wide range of values of 
of R indicate qualitatively similar chaotic features, R. We performed our computations up to R = 250 
however a slightly different pattern starts showing up where the periodic solution was still obtained. The 
for values of R close to R = 75. The post transient trajectory’s data points projected onto the Y-X, Z-X 
trajectory’s data points projected onto the Y-X, Z-X and Z-Y planes, corresponding to R = 250 are pre- 
and Z-Y planes at R = 75 are presented in Fig. 10, sented in Fig. 11 indicating the projection of the limit 
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Fig. 7. The evolution of trajectories over time in the state space for a value of Rayleigh number (in terms 
of R) corresponding to R = 26. Initial transient values not included. (a) The projection of trajectories onto 
the Z-X plane by connecting the solution data points. (b) The projection of the solution data points (not 

connected) onto the Z-X plane. 

cycle. Note that the solution data points in Fig. 11 With the solution for the stream function and tem- 
were not connected, their projection onto the cor- perature completed at different values of R one can 
responding planes still forms what can be seen as a evaluate the average (in time as well as in space) rate 
continuous curve (these are not Poincare sections). of heat transfer in terms of an average Nusselt number 
It should be pointed out that Sparrow [17] shows defined in the form 
analytically the existence of periodic solutions to - 
Lorenz equations for large values of R for the cor- 
responding problem of convection in pure fluids (non- 

A% = k&r,) Jl:’ dr 10HdZ (E)_O (37) 

porous domains). where (z, - 73 is the time interval over which the time 
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of R) corresponding to R = 26. Initial transient values not included. (a) The projection of trajectories onto 
the Z-Y plane by connecting the solution data points. (b) The projection of the solution data points (not 

connected) onto the Z-Y plane. 
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Fig. 9. Successive maxima of Z plotted against each other for R = 26. 

average is sought. Substituting equation (8) and the 
notation adopted through equation (18) and equation 
(37) yields the following expression for the average 
Nusselt number 

Nu;= 1+ V- 1) 
Wr, -70) 5 

Tl Zdr 
(38) 

To 

The solution for Z(r) as obtained at different values 
of R was introduced in equation (38), while including 
post-transient values of the solution only, i.e. values 
of Z(7) after allowing the transient to fade away. 
Therefore the lower limit of the integrals in equations 
(37) and (38), zC,, represents the time when no more 
transient effects are felt, and the upper limit 7, = t,,,. 

The results of this procedure, while the integration 
was performed numerically, were plotted as a function 
of R and are presented in Fig. 12, where the data 
points represent the numerical results obtained. From 
the figure it can ‘be observed that the average Nusselt 
number initially increases as the value of R increases 
beyond the critical value for convection, however a 
sudden reduction in the average heat transfer is associ- 
ated with the transition from steady to non-periodic 
convection followed by a partial recovery as the value 
of R increases further. A slight change of pattern of 
the curve Nu(R>I is observed at a value of R when 
transition from chaos to a periodic regime occurs, i.e. 
at a value slightly 03 R 1 100. There, it seems that 
the derivative, d Nu/dR, of the curve is not 
continuous. 

6. CONCLUSIONS 

The non-linear problem of centrifugally driven free 
convection in a rotating porous layer was solved for 
a truncated Galerkin approximation. At this level of 
truncation it was demonstrated that the set of non- 
linear ordinary differential equations are equivalent to 
Lorenz equations although with different coefficients. 
An algorithm employing the Adomian decomposition 
method was used to solve the equations thus providing 
a semi-analytical solution. The results demonstrate 
different transitions, e.g. from steady convection to a 
non-periodic regime via a Hopf bifurcation, and a 
further transition from chaos to periodic convection at 
significantly higher values of the centrifugal Rayleigh 
number. The first transition is confirmed by a stability 
analysis of the steady convection. These transitions 
show a marked impact on the average heat transfer. 
All the reservations which are applicable to Lorenz 
model are of course applicable here as well and 
developing a model which includes more Galerkin 
modes is indeed required for improving the accuracy 
and confidence regarding the different transitions and 
in particular at the higher values of the centrifugal 
Rayleigh number. Nevertheless, useful information 
can be drawn at the present rank of approximation 
which can be applied when investigating the problem 
at a higher rank. 
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APPENDIX A 

The objective of this appendix is to demonstrate that the 
system of equations (19), (20) and (21) is equivalent to Lor- 
enz equations (Lorenz [16]). We start with Lorenz equations 
as presented by Sparrow [ 171 in the form 

k = (r(Y--x) (Al) 

P=rX-Y-XZ (A2) 

Z = XY-bZ (43) 

Its fixed convection points are (X,, Y,, Z,) = (? [b(r- l)]“‘, 
+ [b(r- l)]“*, (r- 1)). Scaling the variables with respect to 
these lixed points in the form 

p= X y= Y Z 

[b(r- l)]“’ [b(r - l)] ‘I* 
Z= (r-l) (A4) 

transforms equations (Al), (A2) and (A3) to the following 
form 
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%= a(B-_q 

r ??= rX-- E- (r- l)Z 

i = b(_J?E-Z) 

(A5) 

(A6) 

(A7) 

Equations (A5), (A6) and (A7) are identical to equations 
(19), (20) and (21) derived in the main body of the paper 
with the following equivalence of parameters u -V a, r + R 
and b + 4~. The physical significance of the parameters is 
certainly different. 

APPENDIX B 

The decomposition method (Adomian [lo, 111) invokes 
even more general equations of the form 

y’x+wx+.Nx=g (Bl) 

where Y is an easily invertible linear differential operator 
(such as the highest order derivative), 1 is the remainder of 
the linear differential operator, NXrepresents the non-linear 
terms, and g denotes the non-homogeneous part. Solving for 
49X yields 

y’x= g-8X-“JVX (B2) 

Because Y is invertible, an expression equivalent to equation 
(B2) is 

Y-‘YX = Y-‘g-49-‘SeX-49-‘.NX (B3) 

In the case of an initial-value problem, the integral operator 
Y-i may be regarded as definite integrals from r, to t. If Y 
is a first order operator, Y-’ is an one-fold integration 
operator and Ip-‘YX = X-X(&,). Solving equation (B2) 
for X yields 

x= X(t,)$.4o-‘g-Y-‘WX-~-‘~X (B4) 

The non-linear term .MX will be equated to Zg,, C,, where 
the C, are special polynomials to be discussed, and X will be 
decomposed into Ez ,, X,, with X0 identified as X(?,) + Y-‘g, 
so that 

x1 = --Y-‘wx~--r’co o-w 
x, = -Lr’WX, -Y-‘C, f (B7) 

X “+I = -~-‘4eX.-Y-‘C. (B8) 
The polynomials C. are generated for each particular non- 
linearity so that C,, depends only on X,,, C, depends only on 
X0 and X,, C, depends only on X0, X, and X,, etc. All of the 
C. components are calculable, and X = EgO X.. If the series 
converges, the n-term partial sum S. = Ey:d X, will be the 
approximate solution since lim,,, S, = EJZ,, Xj = X by 
definition. It is important to emphasise that the C, can be 
calculated for complicated nonlinearities of the form 
f(X, X’, .) orf( g(X)). The C,, polynomials are defined by 

Co = f(Xll) (B9) 

@lo) 

There are a number of ways to define the general term C.. 
One form is 

” 

C” = f t c(v, 4 5 
“Sl 

(B13) 

where the second index in the coefficient is the order of the 
derivative and the first index progresses from 1 to n along 
with the order of the derivative. In the linear casef(X) = X 
and the polynomials C, reduce to X,. Otherwise 
C. = C,(X,,X,, ,X0). For f(X) = p, for example, 
co = xi, c, =2x,x,, cz =x:+2x,x*, c, =2x,x*+ 
2X,X,, . , etc. It is to be noted that in this scheme, the 
sum of the subscripts in each term of the C. is equal to n. 
It is possible to find simple symmetry rules for writing the 
C, quickly to higher orders. 


